Criterion C

Technique used:

- Linked List (Abstract Data Structure)
- Generating Shifts with 3D arrays (Algorithmic thinking)

- Database serialization
- Local Serialization

- Inheritance

- Encapsulation

- Recursion

Linked List

For this system a linked list was
designed in order to store
employees; considering employees
are constantly added and deleted a

dynamic data structure was required.

Which is why a linked list was
designed, as it allows for more
flexibility, and makes them ideal for
storing and organizing employees.
Additionally, considering the
company is likely to grow in the
future, the memory efficiency of a
linked list is also a strong argument
to implement a linked list, as they
only require small amounts of
memory to store the references to
the next node in the list but also the
fact that it can expand freely, which
leads to minimum memory wastage.

N
Using method rather than direct
reference to the next Employee in
EmployeelList

J

package Model;

4 Thiz claszs iz called employssdiode and repreosents a single node in

understandable, and

Pointer to the next
employee

private hT:llm'“ :T:llm:: i
private bmplapecdode 1"xtl:rr:|1cu::

Emplayeoiade(Emplayes cmalo
emplayes = ocmplayeeT.
nextimplayes = 1111

\ \

= public Emplayochiods ,gﬁt'lcxtkrzlq\'::'\bd

o public Emplayse get_Employes | 'hd" :Iatal’ g
| return omplayes; Retu the Emp

Figure 1 -Emp/oyeeNode class

Used for abstraction, code readability,
and encouraging good coding practice

public void setMextimployechode(Ewployesdode noxtiode) {

return nextbmplayes; R oxt Emplayechiode

this.nextbmplayes = nowthode; Assigns the paramcter to the next Emp

Node constructor]

The class EmployeelList handles the methods and functionality of the linked list, while the Node class is the
template for the nodes of the linked list. Each node contains a “next” pointer to the next node in the list. The
code below shows its

implementations. Head of the list

2 i
E:_I; public class Emplayect ict mctends Linkedl i * This custom method could not be achicwed with the help of lava's linked list
ey { * library. &c the purpase af this method is wery specific and not just
o . * gearching an object, it had to be made custom. This method is quite simple
:’; “.iu'c Hmlu}m;udc]hcad, iat 20- * and works recursively. It takes the head of a list as a paramcter far
. L Lang = * recursive purpascs and takes Employec x as a paramcter also. Employes X is
:;‘ y . * the omployes we are looking for in an instance of Employeclist. Comparatively
LA ’ . * to the default “scarch™ method of the linked list; as every omployec has a
28 * This algorithm can easily be ewtended to allow fior more sophisticated linked + unique cwployes musber, we can idemtify them using anly their emnlogee
:? * list aperations. For awarnle, it could oo modified Ba ansert A ned nade at a * mumber, which iz what a normal search ':llgur1t1'r would have dane. This is
E] * cpecific position in the list or to romove a node from the list. To do this, + gxtremely useful as it makes searching far an seplayes much faster, rather
il * the algorithm would need to be updated to take in additional arguments, such * than I!T.J:Ir:l.:l,g every varishle of the emloee we nr."-im-:;'l,g for to the
3z * as the position or node to insert or romowe, _:nd ta handle these cases + oenlayee currently in the mode, we can simnly compare 3 primitive tyoe of
EE} * accordingly. The simplicity and modularity of this algoritim make it casy to * imtc. Thic makes the program much more efficiemt :
34 * adapt to a varicty of usc cases. y . a e - ST
35 *f :
34 e
ER Jww i *
ET * . .
Eparan head af the linked list

E-] * Adds an Emplayce object to the end of a linked list. * inaran employes to search in the linked list Traversing Node
3 * . :
41 * jparan owployec the Emplayec object to be added to the linked list wp
fi :., public boolean scarch bmployec Model hoad, Employes omployocTaScarch)
o : #f Start at the head of the 1 list
- . layeohiode currcnt = head;
an=) public woid add Emplayee Ta_List(Employes smployss) Eyt
a5 #f Create a now node with the employes information : N

3 #f Base caso: if the current node is null, the omplowes is not found in the list
a7 tmplayechode nowtmployes = new EmployecMode(smplayec); 1iF {current == mull) b
= . /¢ Return false cate that the omployee was not fiound
a3 #f 1f the list is ompty, sct the head to the now node and roturn return Falses
s if (head == mull) { } Base case
51 head = nowkmplayes;
:i 1 return; ## Check if the current node’s omployee matches the employee being scarched for
P if (head.get_employec Mode Oatal). gotbmployecdumber() == omployecToscarch. gotbmployecdumberd)) {

. ## 1f the omployess match, return true to indicabe that the omployes was found

55 ## Traverse the list to find the last node return Erue: :
55 bmployechode traversingods = hoad; } "
57 while (traversingdode gothesxtimployoodode() l= mull) {
:: traverzingtiade - traverzinghade. getsertEmplaycesade(); ## Recursive case: continue secarching for the omployec in the next node of the
oy } f¥ linked list
- a return search layee_Mode(head . getextimplayechiode(), omployecTosearch);
al #¥ Set the newt pointer of the last node to the now node } _Ema = (b i)
62 traversinghods. setexttn layeciode{nowtmplayec) ; []
&3 1] Recursive call to the method
54

(\ Figure 4 — Employeelist class : search employee method
Figure 3 - Employeelist class : addEmployee method

Generating Shifts — Algorithmic thinking

This program allows the user to generate a schedule of shifts based on desired parameters set
by the user in the GUI. The parameters include: the number of days, the number of shifts per
days, the maximum and minimum number of employees per shift, employees to include, and
employees to exclude from the generation. (See Figure xx) This functionality required
significant amounts of algorithmic thinking to work and produce the most efficient solution

using 3-Dimensional arrays.

*When the user presses on the “Generate Shift” button, after having entered the desired

parameters for the
generation, the
generateShift() method is
invoked from the
UserController class and
returns a 3-dimensional
array. The array has
dimensions number of days
by number of shifts by
maximum employees per
shift. The Fisher Yates
shifting algorithm was used
to shuffle the employee
list.!

1) Day of the week

2) Shifts within the day

3) Employees working
a specific shift

1 (GeeksforGeeks, 2012)

pubilic static k| |||] 3'-1cr:rt'-=11 st numE -:IJ-:\:~:~5. int: u-'n:".s. int mundays, int minkmployeesPershift,

:|.'rt akk ':]*

ArrayList<lmbeger: omplayechumbe

= now Arraylistor();
Arraylistclmbegers cligibletmployoes = now Arraylistoe();
Random random = now Random() ;

for {(imt 1 = 1; 1 <= mmbmployeos; iee) {
omployechusbers . add(1);
]

5 tagshifts __[Populate the ArrayList with employeeNumbers]

for l’1'rt i=8; 1« mmbays; i)
reabe 3 oo r "rent day
ﬁrravLutd'rt.g*r av :\:I]:\:!]"' Ly “'\r:!*-:- = now .ﬁrravL:l.str { omplayochumbers) ;

for (imt j = @; j « mmshifts; jev)

':n:lcr nextInt(maxk ':!]-:-.:“::- ershif minkmplaycesPershift + 1)

for (imt k = @; &k < availablobmployesdusbors. siza(); ki)

it emplayecMumber = availahletmployechusbers. get(k);
if { listingwailabieomp loyed or, unavaillablebmployes
&% icPrefornod|om hor, profor
cligibletmplayess. add(omplaycchumber) ;
¥
imt omployecindox = @;
for (int k = @; k < numt ':!]-'-.“:-\“:I*:I EBE ko« *]:g::]'\- mplovess. sizel); kit) -:

:-'l:l:'..:-[:lj[_'.Ji:-:.J -*-F:!]-'“'\r:ﬂ- .
omp loyes Indowes;

1 there aren't cnough eligible omployees, 11l The momalning spots with amy
Jvallad -
for l’1'rt Kk = :-F:l]-' Bl 1:I'~1: £ u- ':l]-' roocionded M £ ¢ avallanlsk ':l]-' “‘.r:l*'z- 51::!’ ; kw)

employeelndex

imt n = omplopechumbers. size();

Set the value in the 3D array and increment]

:|.'rt = ':n:h:r 1:&.1:11!:!’-: + 1} Generate a rd available employees.
Swiap the L at index 1 and 3

Iterate awer the list in rewerse order
iar r_l-,._-l cam - 15k ¥ @; ke-) .: 4/[If we run out of eligible employees, fill with random

)

it tomp = :*:!]-'-.“\r:!*-:- gotii);

omp LoyecMumbers . sebli, '\-F:!]-'-.“\r:ﬁ's.gztl:.' } i
omp loyecdumbers. set(, tomp); Fisher Yates shuffling

algorithm

1 } /

Figure 5 - DAO class: shift generator

Encapsulation

Encapsulation improved data security, administration, and
development ease in this software. The core application was
divided into three packages: Model, View, and Controller. The
model package stores program data, while the view package
handles the GUI. The controller package connects the model
and view and contains the Main(Start) class for executing the
application. Encapsulation was essential for organizing
employee information and achieving success criteria 2 and 3.

w f# Controller
[10.java
[J] MyObjectOutputStream.java
[J] Startjava
[Uljava
[J] UserController,java
+ f Model
[J] DAOjava
[J] Databasejava
[] Employeejava
[7] Employeelistjava
[7] EmployeeNode java
[7] EmployeeNumberComparator java
[4] shiftTableModel java
w i-b\ View
[J] AddEmployeeScreen java
[1] EditEmployeeScreen.java
7] LoginFrame,java
[J] MainFramejava
[J] PayEmployees,java
[J] PreferedEmployees.java
[J] SeeEmployees.java
[J] ShiftGenerator,java
[J] UnavailableEmployees java

Figure 6 - program's architecture,
divided in packages

| Controller package |

| Model package |

View package

Serialization - PDF

In our first encounter, the client requested that all data shall be serialized both in a database, and
locally on the computer. Considering the amount of data that had to be serialized as a PDF, | made
the judgement to use a pre-existing library called iTextPDF, specifically designed for the generation of
PDFs, so | could focus on the algorithmic side of generating the PDF rather than the visual aspect of

it, which saved an enormous amount of time.
Shift Generation
Generated on: 20/12/2022
Day 1 2,7.12.20,10,0, 2123150, 12.16.14.25.7.
Day 2 14,2,18,8,14,13, 15,19.13.183.7, 3.21,219.2.9,
Day 3 9,11,1,1,18,0, 4,10,1,20,19,0, 18,4,18,15,16,5,
Day 4 2.20.78.717, 2,19.6,19.12.0, 15,19.9,18.7.5,
Day 5 5,1,4,6,15,15, 6,4,6,10,12,9, 412,142 117,

[

Figure 7 - generated PDF

- public woid generabeshiftPDF(ITable table)
Lot page sire and margins
Document document = noew Document() ;
dooument . setPagesize(PagesSize A3);
dooumont. setMargins(2d, 2, 24, 2a);

try {
Pdiriber writer = PdfWriter. getinstance(docunent, now FiloOubputStrean(“Oatat\POFY \shifts. pdf™)) ;

Open documert
document.apeni);

Cregte PdfPTable

Paragraph title = now Paragraph(“shift Generation™);
title. sobalignmemt(Elomomt. &L 1GN_CENTER) ;

document.add{title);

sdd date to document
SimpleDateFormat datcformat = new SimpleDaterormat “dd My)G
Paragraph dabte = now Paragraph(“Generated on: * + datchormat. format{now Date()});

dabe. seth]lignment B loment &L 16N CENTER) ;
document . add{data);
PdifiPTable pdfTable = new PdfPTable(table. gebCalumnCount() };

Iterate awer the rows and cells of the JTable and add thow to the PdfPTable
for (dimt i = @; i « table.gotRowlount(); i) {

for (imt j = @; j « tadle.geblolumnCount(); jee)

adf Taole. addCell(table. gotvalusst (i, j).tastring(});
]

}

Add PdfPTable to dooument
ndf Tahle. setSpacingBefore (18§) ;
document .add{pdfTable);
ndf Table. setSpacingBefore (18§);

{lase document

:h:-:r:'ut.:l-us-c('IE

writer.clase();
} catch {Exception ex)
Lagger.getlogger] 10 class . gotMame(}). lag(Lovel SEVERE, mull, ox};
1
1

Is

Figure 9 - DAO class: generate shift pdf method

Serialization — Insertion, deletion, updating, selecting data from Database(Sequential File)

Considering the client’s requirement a database was designed for the task. The database will store all
of the employee’s information, such as their names, their salary and their work location. The
following two figures are from the DAO(Direct Object Accessor) class. Figure 7 shows the creation of
an employee in the database, and figure 6 shows the deletion of an employee from the database.

public void deleteEmployee(ITable table, DefaultTableModel model) {
try {
Statement theStatement = theConnection.createStatement();

int row = table.getSelectedRow();
string cell = table.getModel().getvalueat(row, @).toString();

Employee deleted = new Employee(Integer.value0f(cell));
/*Deleting data from serialized file®/ ’ Dummy errtnployee thrOUgh
polymorphism

the1o.deletekmployee(deleted, this.list);

/*Deleting data from serialized database®/ MysaL
theStatement. executeUpdate("DELETE FROM employee_info where employeeMumber=" + cell); ySQL query

if (row I= -1) {

{/ remove selected row from the model
model. removeRow(table.getSelectedRon());
i
JoptionPane, showdessageDiolog(theUserController. screen, "Success™);

} catch (Exception ex) {
JoptionPane. showvessageDialog(theUserController.screen, "An error occured in contacting the database™);

b

Figure 10 - DAO class : deleteEmployee method

3 public boolean creatoUser(Employee thelser)]

ey i
PreparedStaboment thestaboment = theConnection MySQL query
-propareStabement(“insert into omployec infa (omployocMumber, firstMame, lastMame, worklocation, ©

1 + “annualSalary, fullTime, gender, rale, passward) values (2,2, 2, 2, 2,2, 2,2,717)

thestabement . setString(2, tholser. getFirstMame());
thostatoment . setint(l, tholser gotEmplayoodusber());
theStatement. setString(3, thelser.getlastMame()); Setting all the values that will go in
thestatoment. setstring(4, tholser.gotWorkLocatian(});

thestatoment . setlnt(s, tholser_getnnualsalary()); 4| theDB
thostatoment . sotBoaloan(s, tholsor_isFullTime()});

thottatement setString(?, String.valusf(tholser_ getGenderd)))
thettatement . setString(8, tholser getRale());

thestabement . setString(9, String.valusif{thelser_ getPasoweard()));

thottatoment execute]) ;

thelserContraller. omployeclist . add_Emplayes_To List(tholser)z
this_list.add Employoe To List(thelsor); h S

refurn true; Add to the linked list

} catch (Ewcoption ex)

Lagger_getlogger(gobClass(). gotiame()) . log(Lovel _SEVERE, “&n errar occurred while croating a now user®, on);
return false;

a }

Figure 11 - DAO class: createUser method

dmport java.sql.Connection;[]
public class Oatabase {

private Conncction thelonnection;
private final String link = "jdbcimysql:fflocalhast: 3386/ mydb™; Set up credential variables to
private final String uscrdame - “root”; +—

private final 3tring pass = “12348%; access DB
private static Database ol = now Oatabase();
=i private Oxtabase() {
= éln::.fmt"l:q:rr.rn.'sql.|:1.1:Ih|:.:lr1~':r"'|' ff class name for MySQL Driver . . .
this_theConnection = Driwiﬁhnmr.gctcun;lnctinﬂillnk. userdame, gass);// retricve database connection [Getting the connection, with

aforementioned credentials
} catch (Exception ex) { L

Mgtionfane. showMessogerialogimull, “Failed to connect to the dotabase. Contact administrator®);

Abstraction

¥

=i public static Oatabase getdal)
return ompid;

= public Connection geobConnectioni)
return this. theConnection;
¥

Figure 12 - Database class

Serialization — Local file (Sequential File)

As the client requested for the data to be both serialized in a DB and in a local file, 1 used
Java’s FileOutputStreamn, FilelnputStream, ObjectOutputStream, ObjectinputStream classes
to serialize the employees. The way it works, is that everytime a new employee is added, the
currently held list is read, and then the new instance of an employee is added to the list which
is then written into the file again. The two methods below are the ones used

Figure 9 shows the deletion method from the .SER file, while Figure 10, shows the read and

write methods.

public woid delotobmployes{Employes omp, Employeclist list)

ListcEmployeer omployess = roadEmployvecsFromfFiled);
Find the omplayes to delote
tmplayee omplo
for (Bmploy o {
if (omp } == omp.getbmplayochumber()}

omp Loyoss . romove (omp LoyeoTaDalota)

list.remove(list index_OF Emplayee In Emplaoyeslist({employes Tabe lote . getEmplayechumsber ()),

list));

write the updated list of ompleo
writchbmployees TaFile{omp loyess | ;

} file

Figure 13 - 10 class: deleteEmployee method

Writing new edited list to the .SER]

public Listcemployess reademplopecsFromFiled) {
Listcemplayooy amalayecs = new Arraylistos R
try (Filelnputitroam fis = now FilelnputStroan(“Oata’\sor '\ bwployess . sor®);
dhject InputStrean ais = now Ghject InputStrean(fis)) {
:r:!]o-.':::- = (ListcEmplayoss) D:I:-.r“:nd}:l_‘_::tl:'!;

} catch {Exception o)
Logger.getlogger(0. class. gotMame(}) . log(Lave

[Return the List from the .SER file]

return omplayoes ;<
¥
public woid ur:.t"u'r:luy:':smul"(ustrH'r:l-uy::.- omployess) |
try (FileOutputStroam fos = now FiloOubputStream(” :Ial:a"';.*r"h‘r:luv:*:s.s:r
Ohjectlutputstrean oos = now GhjectOubputstrean(fas)) { (
-o-o:-.-nr:l.t:}:l;::t(:r:]-o-::::-': . G— Write the list to the .SER file
} catch (Exoeptian o)
Lagger.getingger(0. class. getMame(}) . log(Level . SEVERE, mull, =);
Mptionfane. showMdessagerialogimll, =);
]
¥

Figure 14 - 10 class : read and write employee method

Recursion

Recursion was used in this program for improved readability, which makes the code less
cluttered. Despite recursion’s complexity, the following method is used to return an actual
employee from the EmployeeList; indeed, to make development easier and more intuitive,

some temporary employees were created with only an employee number, with the only aim of

returning a full employee using the return_Employee_From_List() method.

= public H'r:lluy'_'c I'"“'tJr'I H'r:lluy'_'c lru'r Lu.tliu'r:luy'_'-'_“hd-c hoad, Employec omployes To_Return)
tart at the head o ced list
H'r:luy:"."hd-c current = 1*:\:1
Base case: if the current node is null, the employes is not found in the list
if {ocurrent == nu].'l." -:

indicate that the omplayes was not found
return nu].l
[f current node's omployee mat omplayes being searched far
if (1*:\:1 3"1: H'r:l-uy:: Wh:d-c _'l:n::n: gtmzluy:ﬁnxr(" == 'r:!]o oo_Ta_Reburn. getEmplayecsumber ())
he layees mat = e layee abject
return head. 3'1: H'r:lu}l:*: Yudc J:n::n:"

¥

Recursive case: continue searching for the employes in the next node of the

linked list R ! I
return return_Emplayee From List{head. getdextEmplayecMode(), emplayes Ta Return); ecursive ca

Figure 15 - Employeelist class: return employee method

}

public Emplayechode delobe Employec From Employeclist(Employocdode hoad, dmt employechodobumber) {

if (head == mull) /¢ IF linked list is ompkty, no operation can be done
return null;

if (omployecModobiunber == @) // if the indew passed in the parameter is the first Employecdode(head), na
/{ operations can be done
return head;

if (omployocoModobumber == 1) /f if index is 1
{

tmployecode emplayectmployooiode = head. gotsectEbmp loyechade() ;
return omplayeckmplapechods ;
¥

return hoad;

hoad. setéevtEmplayeedode(de lete_Emplayes Fraom Bmplaoyecl ist(head . getMextEmplayeeiode(), omplayocchodotiumber - 1)) ;4/
Figure 16 - Employeelist class: deleteEmployee method

=] Juww
L

* g@param head of the linked list
"

putilic imt get_count_of_nades(Enployesdods head) f
/f Baze case

if (head == mll)
return 8;

/f Count is thiz EmployecMode plus rest of the list

return 1 + get_count_of_nodes(head. gotMextEmplaycoMadel)) <\[Recursive call]
1
= public imt gct_N\:dn_cumt_l-lclpcr_Hntmdiw\[Helper method]
return got_count_af_nodes(head) ;

Figure 17 - Employeelist class: get node count method

Polymorphism

As mentioned, some “dummy” employees are sometimes created to ease the development,
thus a new constructor to the Employee class was created, as shown in figure 11.

* Palymorphism : Here palymorphism was used to case the dewelopment of t
y. dummy ompla had d with the air
* the recursi thod “returnEmplayeckramlist o Emplayeclist clas:
* which would return a full and “tangible® omplo with all the variables suc
* as the name and last . with whom calculations and their data is

* used. We can sec the use of this constructor for cxample in the
* delete ¢ ethad used in the O n which we use the canstructar to
This is incredibl

1, as no “dumry” values hawe to
t in arder for a “dumy® omplo be generated, and we C
1y and guickly create an omp wihtout the noed for t

public Emplayec(String firstdame, imt oeployecdumber, String lastMame, String worklocation, imt annualsalary,
boolean fullTime, dhar gender, String rale)
thiz_firstiame = Firstdameo; —
this.omplayeciusher = omployschusber; [Employee constructor]
this. lastMame = lastMame;
this.workLocation = workLocation;
this.annualsalary = annualzalary;
thiz.fullTime = fullTime;
this.gender = gender;
thiz.rale = rale;

]

puitilic Emplayesiint smployestimner) { W~ | Employee constructor for dummy employees]
this.omployecdusher = omployochusber;

]

Figure 18 - Employee class: two employee constructors

2=/

L
18
11
12
13
14
15
=
17
18
19
28

(TR o R

5
i
o]
<
]
£
-
i
]
i
o]
£

5

WoOoWo W W W W W N N W N N W N N

."I

1}

[]

Inheritance

Inheritance was used extensively in this program. Its first instance appears in the
EmployeeList custom linked list, which also extends to java.util.LinkedList. class Even though
most of the features used are custom made, in some instances original methods were used to
supplement the custom methods. Such as the getFirst(), for which there was no need to create
a custom method just for the sake of creating a new one.

Inheritance: Inheritance

Code reuse: Inheriti

was used here for very specific

ng the LinkedList class allows

PUrpOSES:

you to reuse the existing implementation of linked list operations

such as inserticn, deletion, and traversal, saving you the time and effort of writing these operations from scratch.

Improved efficiency: The LinkedList class is implemented in Java and is optimized for performance, so your custom linked list

class can benefit fr

Extenslon purposes:
LinkedList object as

om these optimizaticns.

Inheriting the LinkedList class
input, which will allow for fu

makes 1

asler to integrate with other Java APIs that expect a
ture dev =

te
lopers of this system not to have to redesign a large portion of the cod

4} Simplicity: Inheriting the LinkedList class can make it easier to implement a custom linked 1ist class, especially

because I did not need to customize the basic linked list operations.

public class EmployeeList extends LinkedList<Employees

Figure 20 - Employeelist class inheritance

public imt index Of Employec In_Employoclist(imt indewx, Employeclist cmployeclist) f

for (dnt i - @; 1 ¢ employeclist.get Mode Count Helper Method(): ie+) { [Java.util.LinkedList default method used

if (omployeclist.get(l) . peetmaleyeaiusborl) indew) {
return 1;
¥
i
return -1;]

¥

Figure 19- Employeelist class : index method that uses default linked list
method

Word Count : 730

Bibliography :

GeeksforGeeks. (2012). Shuffle a given array using Fisher—Yates shuffle Algorithm. [online]
Available at: https://www.geeksforgeeks.org/shuffle-a-given-array-using-fisher-yates-shuffle-

algorithm/.

