
Criterion C

Technique used:

- Linked List (Abstract Data Structure)

- Generating Shifts with 3D arrays (Algorithmic thinking)

- Database serialization

- Local Serialization

- Inheritance

- Encapsulation

- Recursion

Linked List

For this system a linked list was

designed in order to store

employees; considering employees

are constantly added and deleted a

dynamic data structure was required.

Which is why a linked list was

designed, as it allows for more

flexibility, and makes them ideal for

storing and organizing employees.

Additionally, considering the

company is likely to grow in the

future, the memory efficiency of a

linked list is also a strong argument

to implement a linked list, as they

only require small amounts of

memory to store the references to

the next node in the list but also the

fact that it can expand freely, which

leads to minimum memory wastage.

Figure 2 - Model.EmployeeNode - Variables and
some methods of the DaysJobs Class

Pointer to the next

employee

Node constructor

Using method rather than direct

reference to the next Employee in

EmployeeList

Used for abstraction, code readability,

and encouraging good coding practice

Figure 1 -EmployeeNode class

The class EmployeeList handles the methods and functionality of the linked list, while the Node class is the

template for the nodes of the linked list. Each node contains a “next” pointer to the next node in the list. The

code below shows its

implementations.

Recursive call to the method

Head of the list

Traversing Node

Base case

Recursive call to the method

Figure 3 - EmployeeList class : addEmployee method

Figure 4 – EmployeeList class : search employee method

Generating Shifts – Algorithmic thinking

This program allows the user to generate a schedule of shifts based on desired parameters set

by the user in the GUI. The parameters include: the number of days, the number of shifts per

days, the maximum and minimum number of employees per shift, employees to include, and

employees to exclude from the generation. (See Figure xx) This functionality required

significant amounts of algorithmic thinking to work and produce the most efficient solution

using 3-Dimensional arrays.

*When the user presses on the “Generate Shift” button, after having entered the desired

parameters for the

generation, the

generateShift() method is

invoked from the

UserController class and

returns a 3-dimensional

array. The array has

dimensions number of days

by number of shifts by

maximum employees per

shift. The Fisher Yates

shifting algorithm was used

to shuffle the employee

list.1

1) Day of the week

2) Shifts within the day

3) Employees working

a specific shift

1 (GeeksforGeeks, 2012)

Fisher Yates shuffling

algorithm

Populate the ArrayList with employeeNumbers

Set the value in the 3D array and increment

employeeIndex

If we run out of eligible employees, fill with random

available employees.

Figure 5 - DAO class: shift generator

Encapsulation

 Encapsulation improved data security, administration, and

development ease in this software. The core application was

divided into three packages: Model, View, and Controller. The

model package stores program data, while the view package

handles the GUI. The controller package connects the model

and view and contains the Main(Start) class for executing the

application. Encapsulation was essential for organizing

employee information and achieving success criteria 2 and 3.

Controller package

Model package

View package

Figure 6 - program's architecture,
divided in packages

Serialization - PDF

In our first encounter, the client requested that all data shall be serialized both in a database, and

locally on the computer. Considering the amount of data that had to be serialized as a PDF, I made

the judgement to use a pre-existing library called iTextPDF, specifically designed for the generation of

PDFs, so I could focus on the algorithmic side of generating the PDF rather than the visual aspect of

it, which saved an enormous amount of time.

Figure 8- Controller.IO - Showing the code that generates a PDF

Figure 7 - generated PDF

Figure 9 - DAO class: generate shift pdf method

Serialization – Insertion, deletion, updating, selecting data from Database(Sequential File)

Considering the client’s requirement a database was designed for the task. The database will store all

of the employee’s information, such as their names, their salary and their work location. The

following two figures are from the DAO(Direct Object Accessor) class. Figure 7 shows the creation of

an employee in the database, and figure 6 shows the deletion of an employee from the database.

Figure 11 - DAO class: createUser method

MySQL query

Dummy employee through

polymorphism

Setting all the values that will go in

the DB

MySQL query

Add to the linked list

Figure 10 - DAO class : deleteEmployee method

Figure 12 - Database class

Set up credential variables to

access DB

Getting the connection, with

aforementioned credentials

Abstraction

Serialization – Local file (Sequential File)

As the client requested for the data to be both serialized in a DB and in a local file, I used

Java’s FileOutputStreamn, FileInputStream, ObjectOutputStream, ObjectInputStream classes

to serialize the employees. The way it works, is that everytime a new employee is added, the

currently held list is read, and then the new instance of an employee is added to the list which

is then written into the file again. The two methods below are the ones used

Figure 9 shows the deletion method from the .SER file, while Figure 10, shows the read and

write methods.

 Writing new edited list to the .SER

file

Figure 13 - IO class: deleteEmployee method

Recursion

Recursion was used in this program for improved readability, which makes the code less

cluttered. Despite recursion’s complexity, the following method is used to return an actual

employee from the EmployeeList; indeed, to make development easier and more intuitive,

some temporary employees were created with only an employee number, with the only aim of

returning a full employee using the return_Employee_From_List() method.

Return the List from the .SER file

Write the list to the .SER file

Recursive call

Figure 14 - IO class : read and write employee method

Figure 15 - EmployeeList class: return employee method

Figure 16 - EmployeeList class: deleteEmployee method

Recursive call

Helper method

Recursive call

Figure 17 - EmployeeList class: get node count method

Polymorphism

As mentioned, some “dummy” employees are sometimes created to ease the development,

thus a new constructor to the Employee class was created, as shown in figure 11.

Employee constructor

Employee constructor for dummy employees

Figure 18 - Employee class: two employee constructors

Inheritance

Inheritance was used extensively in this program. Its first instance appears in the

EmployeeList custom linked list, which also extends to java.util.LinkedList. class Even though

most of the features used are custom made, in some instances original methods were used to

supplement the custom methods. Such as the getFirst(), for which there was no need to create

a custom method just for the sake of creating a new one.

Word Count : 730

Figure 20 - EmployeeList class inheritance

Java.util.LinkedList default method used

Figure 19- EmployeeList class : index method that uses default linked list
method

Bibliography :

GeeksforGeeks. (2012). Shuffle a given array using Fisher–Yates shuffle Algorithm. [online]

Available at: https://www.geeksforgeeks.org/shuffle-a-given-array-using-fisher-yates-shuffle-

algorithm/.

